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Abstract-The postcritic.a1 behavior of a 3D system of e1astic'llly restrained beams. which can
manifest overall and local modes. IS analyzed. The secondary bifurcation in the overall postcritical
range is studied. By applying the multiple scale perturbation method it is found that the amplitude
modulation phenomenon is governed by a ditferential equation of the second order. An appro",imate
analytical e",pression of the amplitude modulating function is obtained by the WKB asymptotic
method. The occurrence of a turning point which is respt1nsible for the strong localization is
revealed. Close analogies with localization of vibrations in imperfect systems arc highlighted.

I. INTRODUCTION

Systems which exhibit a great number of nearly simultaneous modes arc characterized in
the postcritical range by buckling patterns that strongly depend on the intensity of the load.
In particul.tr. the deformation can localize in one or more regions of limited size. in contrast
with the periodic character of critical modes. The phenomenon is known as lo('uli:u(iof/ .tnd
it has heen studied hoth experimentally (Moxham. 1971) and theoretically. Tvergaard
and Needleman (19XO) have made reference to diverse models of imperfect systems. with
nonlinearities of the softening type. ohserving that the loc.l1ization is the consequence of a
hifurcation which occurs immediately after attainment of the limit point. on the unstahle
branch of the equilibrium path. A linear combination of the primary periodic mode and of
the hifurcation mode c.tn produce a preferential growth of one of the waves and thus explain
the localization tendency. Potier-Ferry (19X7) has studied the postcritical hehavior of a
beam on a nonlinear clastic soil. showing that. at the restraints. the hardening nonlinearities
can produce limit layers wherein the amplitude of the buckling is modulated. The local­
ization occurs in the presence of softening nonlinearities and is attributable to the high
modal density rather than to the insurgence of secondary bifurcation. Benito and Sridharan
(19~5). Sridharan and Ali (1985). Byskov (19~~). Byskov e( til. (l9lN) and Luongo and
Pignataro (1988) have analyzed the problems of interaction among local and overall
simultaneous modes of assemblies of compressed plates; in particular. in the last paper. it
is shown that the linear combination of several critical modes gives rise to localized buckling.

In recent years. in parallel with these studies. research has been performed on problems
of localization of the oscillations in imperfect structures at high modal densities. such as
systems formed by a great number of weakly coupled substructures [see. for instance. Pierre
and Cha (1989) and Cornwell and Bendinksen (1989)]. In such systems small local variations
in stilfness and/or mass destroy the periodic character of the vibration modes which localize
in one or more region of the structure. The extent of the localization is proportional to
the ratio between the amplitude of the imperfections and the degree of coupling among
substructures. Hence localization increases with modal density. The phenomenon can be
explained on the basis of a linear theory and is closely bound up with the insurgence of
turning points in the solution. as demonstrated by Luongo (1988).

An in-depth study of the analogies between the two problems lies outside the scope of
this paper. What is done here is to analyze the static phenomenon with the help of a specific
model. the aim being to demonstrate that. as in the dynamic problem. the localization
mechanism calls for s'ltisfaction of two requisites: (.1) that the system should be of high
modal density. and (b) that there should be present a "structural irregularity" in the broad
sense. The example given concerns a 3D beam system on clastic soil which exhibits an
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Fig. I. 3D model of elastically restrained beams.

overall mode and several local modes that affect a single beam. The behavior of the model
is similar to the plate assembly studied in the paper by Luongo and Pignataro (1988).
However. here a secondary bifurcation along a nonlinear equilibrium path is dealt with. It
is assumed that the second bifurcation is close enough to the first to linearize the problem
in the amplitude of the overall mode which is taken as being the control parameter. The
equation that governs the secondary bifurcation has slowly and weakly varying coefficients
so that the elTect of the primary bifurcation reflects in a "structural defecC' which. together
with the high modal density. is responsible for the localization. Through the use of the
multiple scale perturbation method it is possible to determine an equation in the (variable)
amplitude of the secondary bifurcation mode; as in the dyn'lmic case. this leads to a turning
point problem which is solved by the WK R method. It is shown that if the modal density
is sullidently high. the amplitude of the mode tends rapidly to zero outside a small region
in whidl it is weakly variable; the 10<':411 buckling is thus localized.

Only the hifun:ation analysis is performed here and no information is obtained about
the Illcal postcritical behavior of the system. Consequently. even though the bifurcation
mode may be highly locali/cd in character. it docs not mean that the structure would
collapse in such a locali/cd modc. sincc geometric nonlinearities could reduce the drects of
thc amplitude modulation in the postbifurcation rangc

~. STRUCTURAL MODEL AND POSTCRITICAL IUFURCATION

Lct us considcr the model in Fig. I. consisting of two elastic beams connected by bars
which arc rigid in the xy plane and inlinitcly flexible out-of-plane, The beams arc con­
tinuol/sly restruined by elastic springs orthogonal to the plane and arc compressed by forces
F. The structure is simply supported,

Two instability forms <.:an occur: one of overall type. in which the structure behaves
as a single shear-indeformable built-up beam. the other of local type. in which each beam
buckles independently out-of-plane. restrained by the springs. From this point of view the
behavior of the structure is similar to that ofcompressed thin-walled beams that c.ln exhibit
either overall instability (Eulerian or l1exural-torsional) or local instability of the component
plates.

In the system concerned overall instability occurs when F is equal to the Eulerian
criticalloaJ

(I)

where I is the length. £ the clastic modulus and A the cross-sectional area of each beam.
whose dimensions are assumed to be negligible compared with the halfheight h; hjl« I is
also assumed. The overall critical mode associated with the load F, is

1i1.~(X) = ±t'orr.(hjl) cos (rr.xjl)

t'1.~(x) = L'o sin (rr.xjl)

\l·u(.x") = 0 (2)
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where index.es I and 2 refer to the bottom and top beams, respectively, and t· o is the midspan
deflection,

The local instability is governed by the equation of the beam on elastic soil

£1","" + (Nil'')' +kw =0 (3)

where the apex denotes differentiation with respect to x, I is the inertia moment of the beam
with respect to the centroidal axis parallel to y, k is the stiffness of the springs and
,'Ii =F =const the axial force; moreover w == ll'I.Z' Assuming that the beams are simply
supported at the ends then w = w" =0 in x =0, I, so that eqn (3) admits the eigenfunction

and the eigenvalue

where

lI'(x) = Wo sin (mtx/I)

IJ = (rtf/) jEi/k

(4)

(5)

(6)

has been posed. In eqn (4), n is an integer which must be determined by making F, a
minimum, so it depends on the dimensionless parameter If. If the wavdength of the local
1Il0de is small compared with the span of the beam, Le. 1/ is hlrge (e.g. 1/ ;:;: 20), .1 large
Ilumber of nearly simult.lOeous modes exist, corresponding to loads dose to

(7)

obtained by posing Il = l/jJ in eqn (5). In this case the parameter IJ assumes the meaning
of the ratio between the wavelengths of the local and overall modes. and by hypothesis is
a small quantity. Besides it is easy to see from eqn (5) that fJ is a measure of the modal
density of the system, that increases for decreasing values of the parameter.

In the paper by Luongo and Pignataro (1988), the postcritical behavior of thin-walled
compressed beams was analyzed assuming that the overall and local critical Imlds are
coincident. In particular, the nonlinear analysis of the multiple bifurcation has revealed the
occurrence of localization phenomena. Here we consider the case in which F; is slightly
higher than F, and limit ourselves to determining the secondary bifurcation point and the
associ,lted critical mode that occurs for a load larger than the critical one. The (stable)
bifurcated path corresponding to the primary bifurcation is described by the parabola

(8)

along which, to within terms proportional to d. the deflection of the system is given by
eqns (2). In the postcritical range, due to this displacement field, the norm,11 force acting
on the two beams is varied by

(9)

Therefore the resultant force is N 1.2 = F+6.N u and so taking account of eqn (8), it is
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(10)

where quadratic terms in I"f) have been omitted.
By assuming 1"1) > O. the secondary bifurcation occurs when the critical equilibrium is

reached in the bottom beam. which is more compressed than the top beam. The condition
ofcritical equilibrium must be formulated referring to the varied configuration of the beam.
which is compressed and bent in the xy plane. and therefore concerns the stability of an
arch for out-of-plane displacements. If the cross-section is symmetric with respect to the y
axis. the critical mode consists of a lateral deflection and twisting of the beam. Nevertheless.
in the problem under consideration. it is possible to show that the angle of twist is small.
of order 1",,1t. and its influence in the force equilibrium is small. of order (1'0 'Iz)~. so that it
can be neglected, Therefore. the bifurcation condition corrected to first order is expressed
in the single variable II' and is still given by eqn (3). except for the normal force which is
now a function of x according to eqn (10). By referring to the bottom beam and omitting
index I. from eqn (10) we obtain

(II)

Besides. assuming that F, is close to F,. then

with 0 <;'« I. and eqn (3) can he put in the form

/;'111''''' + f;II'" +kll'+ f~ [[(1'0/11) sin (rrx/I) -~'III":"

( 12)

( 13)

Equation (13). with assol.:iated bouIH.lary I.:Onditions. is a linear eigenv.llue problem in co/It
and in the eigenfunl.:tion II'(X). The first three terms I.:onstitute the equation of the beam on
e1astil.: soil suhjeded to the 10l.:al I.:ritil.:al load. Of the last two terms. whidl are small
compared with the others. the first one represents the ellel.:t of the primary bifurl.:ation
(whil.:h is the I.:ause of the variable I.:oellkients in the eljuation) and the second the dlect of
the c10sencss of two I.:ritical loads. These terms ean be considered as perturbations of the
equation of the beam on elastic soil and represent. in one sense. "defects" of the geometric
stitl"ness of the system. It will be seen successively that the perturbations and the high modal
density are responsible for the localization.

In thc following sections eqn (13) is solved by applying first the Galerkin technique
and then the multi pic scale perturbation method.

J, GALERKIN SOLUTION

The unknown function lI'(x) in eqn (13) is expressed by the series expansion

1\' = ~ (c 1/')11'L /. I

I - I

(14)

where 1\', = sin (jrrx/I) arc the eigenfunctions of eqn (3). in which N is a constant. Notc
that. for conwniem:e. coellicients (', have been divided by j.

By applying the standard Galerkin technique. and accounting for the orthogonality
properties of the eigenfunctions II',. the following .dgebraic eigenvalue problem. of infinite
dimension. is obtained

L (',[(tL+ IT,)c5,,-2;·x,,1 = 0 (i = 1.2.... ).
, ~ I

Here 15" is the Kronecker symbol and

( 15)
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X" = iI sin n:~ cos in:~ cos j1t~ d~
II

1947

(i±j even) (16)

where i» I. j» I have been considered. Moreover. the following positions have been
introduced

together with

F {I [( ')' ()'J }i-F/ J - n - ,
(1/= fFF-:~ 2 n + J -I 11".

( 17)

( 18)

In eqns (15) i. is the eigenvalue ,1Od I' and (1; are parameters. The parameter II has the
me..tning of thc r..ttio bctween a measure of the "imperfcction" y ..lOd a measure of the modal
density: the eigenv<tlue problem depends on this r..ttio. in analogy with problems ofdynamic
localization. Paramcters (1/. instead. account for the small dilTcrences between the higher
local criticallo'lds f~ and the lower critical load f~.

By considering only M terms in the series (14). e4ns (15) become an M x M eigenv<tluc
problem. Since m,ltril( [x,,1 is symmetrical and positive defini1e. e4ns (15) admit M real
solutions with i" > 0 corresponding to as many secondary bifurcations. Here we are inter­
ested in the minimum i." i,e. i," which corresponds to the first bifurcation. By numerically
solving the eigenvalue problem the following results arc obt..tined.

(a) Only the harmonics with wavenumber j which is close to n give significant contributions
to the solution. In fact. coetlicients Ci rapidly decrease for increasing values of the
dilferences Ij-nl.

(b) For a lixed n and an increasing number M of harmonics. i'b very rapidly converges to
an asymptotic value which depends on I'. Table I shows. for various I'. the All/II ratios
obtained considering j = n. n ±2•...• II ±2m in the eigenvalue problem. It is seen that
the nlte of convergence decreases for increasing I': however. in the range examined.
M == 2m + I = II harmonics are sulftcicnt to furnish a good approximation of the
eigenvalue. Similar results are obtained for the corresponding eigenvector.

(c) The eigenvalue i'b is practically independent of n. In fact. by varying n from 25 to 100.
i'b varies by only a few units per thousand. This result can be explained by the fact that
coellicients Xi; do not depend on " [see eqn (16)] while parameters (1/ are weakly
dependent on " for j close to n. i.e. in correspondence with the most important
harmonic components. In fact. by posing j = II ±k. with k « n. eqn (18) furnishes
(1/ == 2k 2 +O(k/n).

T.. bh: I. Convergence of the minimum cigenv..lue
etl =25)

A..III

/1 nt = 2 nr = 3 m = 5 m = 7

10 1.3251 1.3251 1.3251 1.3251
100 1.1050 1.1040 1.1040 1.1040
200 1.0762 1.0730 I.OnK 1.072S
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Fig. 2. I'h/ll ratios vs II by dilferent methods.

(d) For increasing II. the i.h/Il ratio decreases and tends towards I when II -.. r:f.) (Fig. 2.
curve A). i.e. for very high modal density. (I' this ilsymptotic result is llsed. I'o/h =:: y is
obtilined from eqn (17). then the bifurciltion loud Fh on the postbuckling equilibrium
puth follows from eqn (8) :

( 19)

Since (11//) ~ « I. Fh < f~ from compurison with eqn (12). The secondary bifurcution
therefore occurs ut a lower load than thilt which would occur in the absence of an
interaction. with a consequent reduction in the stable pilrt of the bifurcuted path.

(e) At the bifurciltion. the local dellection of the beam is represented by un oscilhlting
function with strong modulated umplitude (Fig. 3). The modulation depends only on
the vullie of the purameter II. not on the number 1/ of the hitlfwuves of the local criticul
mode. as it appeurs by compuring curves with the same vulues of II.

4. AMPLITUDE MODULATION OF THE LOCAL BUCKLING: GOVERNtNG EQUATION

The anulysis performed in the previous section necessarily requires numericul calculus
to solve an eigenvalue problem. Besides the solution is represented by a linear combination
of functions. so it is not very suitable for concisely describing the phenomenon. For these
reasons it is better to follow another procedure. similar to that adl\pted by Potier-Ferry
(1987) for a nonlinear differential equation with constant coefficients.

To this end it is convenient to render eqn (13) dimensionless by introducing the new
variables

.\: =:: rrx/(fJI). Ii' =:: wIT (20)

where Tis iI length. In terms ofdimensionless variubfcs. remembering that n =:: 1/11. the local
critical mode is of the type sin .\' and the overull one is sin If.\'. In terms of new variables.
eqn (13) is written as

(21 )

with the boundary conditions
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11'(0) = 11'''(0) = lI'(n/IJ) = 1I'''(n/IJ) = 0 (22)

having omitted the tilde and having still denoted by an apex ditferentiation with respect to
the dimensionless variable. Equations (6), (7) and (17) have also been taken into account
and " « I has been considered.

The coetlicients of eqn (21) vary slowly and weakly. This suggests use of the multiple
scale perturbation method (Nayfeh, 1973). which permits attainment of a differential
equation in the variable amplitude of the mode. The unknown function is expanded in a IJ
series

(23)

.lOd is assumed to depend on several variables xo. x I •.•.• related to x by equations

(24)

Xu represents the fast variable. associated with the law of the local mode; X I the slow
vuriuble, associated with the law of the overal1 mode [and coefficients of eqn (21»; x~ is a
slower variuble. Using the chain rule the derivatives are transformed according to

d~/dx~ = D5o+2fJD51 +fJ~(Di, +2D5~)+ ...

dJ/dxJ = D~oou+4fJD~oo,+fJ~(6D~o,,+4D~tld+'" (25)

where the operator D denotes differentiation with respect to the variables h.wing the same
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indexes. By substituting eqn (13) in eqn (1 I) and taking into account eqns C~5). the following
perturbation equations are obtained:

p :L(II'I) = 0

pc: L(ll'c) = -4(D'~U<)1 +D~I )11"\

Ii' :L( II',) = - (6D~1I11 +2DL )11'1 -4(D~II[tc + D,~c )1\',

-4(D~<)II' + D,~ I )1I' c- 2Dn«i. sin x 1-Jl)DIIII'd (26)

where L = D'~II<)<) +1Dt;1I + l. In the same way the boundary conditions to be imposed in
x = o. Tt/Ii. result in:

II : 11'1 = O. D'~III1', = 0

#1: II'c = O. D'~III1'c = -1D'~111'1

Ij':II', =0. D~III1" = -2D,~,II'1-(Dil+2D,~Jlr"

The solution to eqns (26~1) and (27a) is

(27)

(28)

It is therefore a sinusoidal fUl1<.:tion the amplitude of whi<.:h is modulated on the slow s<.:ales.
Note that in elln (28) the phase was not introdlll.:ed occause in eqn (26) only eVen deriva­
tives appear. Therefore. at the order Ii '. no phase modulation exists hut only <IIllplitude
modulation.

By substituting eqn (28) into eqn (26b). a..:counting for ([)~<)"I +[)~I)II'I =0 and
integrating. the following general solution is obt~lined

where hand c arc arbitrary fun<.:tions of the slow variables x I. X1; moreOwr

h(O.O) = -D1a(O.O). h(rc.IJrr) = -D,a(rc.IITt)

(lY)

(30)

must hold good to satisfy boundary conditions (27b).
In order to make the asymptotk expansion (23) uniformly valid in the interval

o~ x" ~ nili. h(x,. x 1 ) = 0 is nssumed. In addition c(x i • .\'2) = 0 is chosen. since the
fun<.:tion (' sin XII repents the IJ-order solution (28). In wndusion. the Ij2-order equations
yield We = 0 together with D,(I = 0 at the boundaries.

By replacing II', and Il'c in eqn (26c) and imposing the coeflicients of sin XII to be zero
(solvability condition). it follows that

d ~(I I..

d
·-. 2 +:, (,.. Sill XI -JI)(I = 0
.\, - (31 )

where a = a(xt> h~ls been assumed. because the dependence on Xc remains undetermined
<It this order. The differential equation (31). integrated with the boundary conditions

da
.- (0) = O.

dx,
da
-(Tt) = 0
dx,

(32)

permits the determination of the function a(x I). i.e. the law of amplitude modulation.



Amplitude: modulation and localization in inte:rac!lve: bucklmg 1'151

5. ANALYSIS OF AMPLITUDE MODULATION: THE TURNING POINT PROBLEM

Equations (31) and (32) constitute a second-order boundary value problem with
variable coefficients. which can be put in the form

(33 )

where

da

d
-(O) == O.

XI

da
- (rr/2) == 0
dx ,

(34)

I (x I) == !(). cos X I - IL). (35)

Note that the origin of the abscissa X I has been shifted to the midspan and only
symmetrical solutions. to which lower eigenvalues ;'b correspond. are considered.

A preliminary numerical solution of the problem (33)-(34) has been performed. The
solution has been obtained by a shooting method. by employing a Runge-Kutta method
to solve the initial-value problem and the bisection procedure to satisfy the condition .It the
endpoint of the interval. Results obtained are in excellent accord with those of the Galerkin
solution. to within an error of some units per thous..md. so they are not shown here. This
analysis confirms the validity of the multiple scale perturbation approach and confirms that
the phenomenon is in fad governed by the amplitude modulation differential eqn (3). In
particular. by remembering eqns (20a) and (24b). it is seen that the amplitude modulating
function a(x l ) does not depend on" == II/f. as previously found by the Galerkin analysis.

With the aim of furnishing a simple. analytic.1I solution to the boundary value problem
(33)(34). we first distinguish two cases:

(a) ;. < IL: beC.luse I(x I) < () in the whole domain. the solution a(x,) is exponential;
(b) ;. ~ IL: there is a point x I == 6. (t/lm;"9 or lrclllSit;o" puint) where f(6.) == (); because

the function changes sign in [0. rr!2] the solution is oscillating for x I < 6. .tnd exponential
forx , >6..

However. in ease (a) no solutions to the boundary value problem exist. In 1~lct. due to
f(xl) < (). from eqns (33) <lnd (344.1) it follows that dla!dx~ > 0 in the whole interval [if
a(O) > 0], so that eqn (34b) cannot be s<ltisfied.

The turning point problem. c<lse (b). c<ln instead be solved by applying the WK B
perturbation method. provided IL assumes sutliciently large values. An application of the
method has been presented in a paper by the author (Luongo. 1988) where details of the
procedure <Ire given.

The WKB solution reads:

a(xd == (f(XI»-I~[c1 cos (t/JI(x l )+rr/4)+cl sin (t/JI(x l )+rr/4») (XI < 6.)

a(x l ) == (-f(xd) I ~[cl exp t/J1(.\·d + kl exp (-t/J l(xd)] (XI> 6.) (36)

where CI and C1 are arbitrary constants and

(37)

In eqns (37) 6. == 6.().) == arcos <ILl;.) is the abscissa of the turning point. which is unknown.
because of its dependence on ;"

Equations (36) are singular at x, == 6. so that they are not valid near the transition
point. In this region there exists a transient condition that can be accurately described by
the Airy functions. or equally by the Bessel functions. that are not reported here [sec. for
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instance, Hl.1ndhook ofMl.1theml.1ticl.1/ Functions (1972)]. The solutions in the inner and outer
regions are then matched by applying the matching principle (Nayfeh, 1973).

By imposing the boundary conditions (34) the following algebraic equations in the tW(l
arbitrary constants are obtained

where

(
-sin (l/J dO) +1t/4)

:x, exp l/J:(Tti2)
(38)

(39)

By requiring the determinant of the matrix of the coefficients to vanish the following
characteristic equation is obtained

(40)

Equation (40) must be solved for the eigenvalue ;., accounting for the positions (37) .md
A = AO.). However, an approximate solution can be obtained, Jt being large by hypothesis.
By assuming;. = O(p) then '1.dlJ.~ =0(1) .\Od t/J~(1tr2) = O(J"it) so th.lt eqn (40) admits
the 'lpproximatc solution tan (l/J, (0) +1t/4) = 00. i.e.

"',(0) = 1t(k-3j4) (k = 1,2, ... )

("I = 0, ("1 = I. (4\ )

Note that eqns (41) exactly satisfy only the condition of symmetry (3~a) at x, = 0, not the
boundary condition (3Sb); however, they arc a good approximation of the solution when
'" ~(1t/2) is sulliciently large. Note also that the eigcnvaluc problem admits infinite solutions,
ca.:h corrcsponding to a bifurcation.

Equ'ltion (4Ia) can be easily solved in closed form for thc eigenvalue i. if j'(xd is
approximated by .. parabola in the interval [0, AU)]. with an error whose size decreases
with decrease in A. i.e. the greater the localization of the mode. By proceeding in this way
we obtain from egn (35)

(42)

where

(43)

Introducing eqn (42) in cqn (37a) and integrating we obtain t/J, (0) =1t/"o.A 1/8; after
replacing in eqn (41), in which k = I. and accounting for eqn (43) we finally get

(44)

where 1/2 and 1/4 can eventually be neglected with respect to Jt. Introducing eqn (44) in
eqn (43) the abscissa of the turning point is determined as a function of J.l. Equation (44)
is plotted in Fig. 2. curve B, and compared with the Galcrkin solution [or. equally. with
the numerical solution of eqns (33), (34)]. It is seen that the WKB approximation is very
good when Ji ~ 20. despite the many assumptions made in the analysis.
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Fig. 4. Amplitude modulating functions; analytical and numerical solutions.

The curves (l(x I) determined for dilTerent values of 11 from eqns (36) and those obtained
by numerically integrating eqns (33 )-(34) .tre plotted in Fig. 4 vs the original abscissa x.
When JI =20. the dilTerences betwecn thc two solutions 'Ire noticeable. because of the error
associated with the bound'lry conditions .It Xl = rr./2. However. when JI increases. the error
rapidly tends to zero and the two curves approach e<lch other. Obviously. <I more accurate
<In<llytic<ll solution can he obtained ifellns (3R) -(40) arc solved eX<lctly.

Figure 4 shows that the degree of localiz<ltion incre<lses with JI. and it is rather high
even for rd<ltivcly small JI. For cX<lmplc. for .1 ratio fd F, = 1.1 <lnd a local mode with
w<lvenumbcr 11 :; 10. i.e. for a mod.d density that is not very high. it ensucs th.tt " = 0.1.
fl = 0.1 <lnd so JI = 10 from clln (17b). For thc same mtio between the critical loads and
higher modal density. e.g. 1/ = 20. then JI =40 and the local dellection is strongly localized;
the corresponding amplitude of the over.1I1 mode is obtained from eqns (17a) "nd (44):

I'n/II = 0.11. i.e. /'u/II ~ /'.
The "cx.tct" amplitude modulating functions relative to JI = 20. 100 arc <llso reported

in Fig. 5. for comparison with the Galerkin solution. It is apparent that they accurately
describe the buckling patterns.
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Fig. 5. Galcrkin solutions (oscillating functions) and perturbative solutions jamplitude modulating
functions).



A. llO~GO

6. CO:-';ClUSIO:-';S

The postcritical behavior of a 3D system of elastically restrained beams. characterized
by a high modal density. is analyzed. The point of secondary bifurcation associated with
local instability is determined on the bifurcated branch corresponding to an overall insta­
bility mode. Analysis of the local buckling has highlighted amplitude modulation phenom­
ena and localization due to two concomitant causes: (a) high modal density of the system.
and (b l variable geometric stiffness due to the effect of primary bifurcation. The magnitude
of the localization has been found to depend on the ratio involving the difference between
two critical loads. which is assumed to be small. and a parameter which decreases as the
modal density increases.

The analysis has been conducted first by means of the Galerkin technique. then by the
asymptotic multiple scale method. which has permitted determination of the second-order
differential equation that governs the amplitude modulation. As in parallel studies in a
dynamic field. it is found that the phenomenon is described by a turning point problem
which can be solved by the WKB method.
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